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Abstract Information theory (IT) is applied to explore electronic phase-equilibria
in molecules. The modulus and phase parts of electronic states, giving rise to the
particle probability and current densities, respectively, delineate two basic degrees-of-
freedom in the generalized (quantum) IT treatment of molecular states. The classical
and non-classical contributions to the resultant information content are accounted
for in the complementary Shannon and Fisher measures. These quantum descrip-
tors are then applied in the “vertical” information principles, which determine the
density-constrained molecular equilibria. A close parallelism between the vertical
maximum-entropy and minimum-energy principles of quantum mechanics and their
thermodynamic analogs is emphasized. The relation between the probability and phase
distributions in the “horizontal” (probability-unconstrained) equilibria is examined
and solutions of the (energy-unconstrained) orbital variational rules for the extremum
entropy/information are shown to involve the spatial phase related to electron density.
Selected properties of such molecular equilibrium states are explored.

Keywords Entropy/information principles · Horizontal variational rules ·
Information theory · Molecular equilibria · Phase equilibria ·
Quantum information descriptors · Vertical variational principles

1 Introduction

The information theory (IT) [1–8] is one of the youngest branches of the applied
probability theory in which the probability ideas have been introduced into the field
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of communication, control, and data processing. These classical information con-
cepts have been also successfully applied to explore the molecular electron prob-
abilities and the system chemical bonds, e.g., [9–20]. Both the electron density
or its shape factor, the probability distribution determined by the wave-function
modulus, and the system current distribution, related to the gradient of the wave-
function phase, ultimately contribute to the resultant information content of mole-
cular states. The particle density reveals the classical information content, while
the probability current generates its non-classical complement in the overall (quan-
tum) information measure [9,10,21,22]. The latter introduces a non-vanishing infor-
mation source into the associated entropy/information continuity equation, which
expresses a local balance in the time evolution of the resultant information density
[10,13].

The IT perspective on molecular systems introduces into the theory of electronic
structure the novel entropy-representation, which complements the familiar energy-
representation of the molecular quantum mechanics. Such a dual representation par-
allels that known from the ordinary thermodynamics. It establishes the equivalent
energy and entropy/information principles governing the system equilibrium states
and provides a new, unifying perspective on molecular states, extends the variety of
tools for probing chemical processes, and enriches the range of available descriptors
of the bonding patterns in molecules.

Many classical problems of theoretical chemistry can be approached afresh using
the IT perspective. For example, the displacements of the classical information distrib-
ution in molecules, relative to the promolecular reference consisting of the molecularly
placed non-bonded constituent atoms, have been investigated [11–13] and the least-
biased partition of the molecular electron distributions into subsystem contributions,
e.g., densities of bonded atoms, has been examined [11–13,23–33]. This IT approach
has been shown to lead to the “stockholder” atoms-in molecules (AIM) of Hirshfeld
[34]. These optimum density pieces have been derived from alternative global and
local variational principles of IT. This way of dividing the one-electron distributions
has been subsequently generalized in a related problem of the AIM partitioning of
two-electron densities [11,30–32]. The non-additive Fisher information in the atomic
orbital (AO) resolution has been used as the contra-gradience (CG) criterion for
localizing bonding regions in molecules [11–16,35–38], while the related informa-
tion (kinetic energy) density in the molecular orbital (MO) resolution has been shown
[11,38] to determine the vital ingredient of the electron-localization function (ELF)
[39–41].

The communication theory of the chemical bond (CTCB) has been developed
[11–13,42–59], using the basic entropy/information descriptors of the molecular
communication channels in the AIM, orbital or local levels of resolving the elec-
tron probability distributions. The conditional probabilities of these information sys-
tems have been generated from the bond-projected superposition principle of quan-
tum mechanics [60,61]. The same bond descriptors have been used to provide the
information-scattering perspective on the intermediate stages in the electron redistrib-
ution processes [62], including the atom promotion via the orbital hybridization [63],
and the communication theory for excited electron configurations has been developed
[64]. Moreover, the phenomenological description of equilibria in molecular subsys-
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tems has been proposed [11,65–67], which formally resembles that developed in the
ordinary thermodynamics [68].

Entropic probes of the molecular electronic structure have provided attractive tools
for describing the chemical bond phenomenon in information terms [11–13,69–78].
The importance of the non-additive effects in the chemical-bond phenomena has been
emphasized and the information-cascade (bridge) propagation of electronic probabili-
ties in molecular information systems, which generates the indirect bond contributions
due to orbital intermediaries, has been examined [13,74–78].

All these local and AO/MO-resolved entropic tools were classical (probability-
based). Of similar character were the communication descriptors derived from the
classical information channels, which use the conditional probabilities of AO events
of the real basis states describing the assumed stationary (non-degenerate) molecular
state, for which the spatial phase components and hence also the associated currents
identically vanish. A truly quantum channel, exhibiting the interference effects, calls
for the amplitude scattering system, with the amplitudes of the underlying conditional
probabilities then explicitly depending on phases of the emitting and monitoring event-
states.

The extremum principles of the quantum information measures, possibly con-
strained by the extra requirements of conserving some “geometric” (normalization)
and/or physical constraints, ultimately determines the associated quantum equilibria
in molecules. In this work we shall first focus on the vertical information principles,
for the fixed electron density, and then examine the horizontal (energy/probability
unconstrained) entropic rules, examining the relation between the phase and proba-
bility distributions. Selected physical descriptors of the resulting phase-equilibrium
states will be explored. It will be argued that the density-constrained (vertical)
energy and entropy/information rules in quantum mechanics, for the conserved system
entropy/information and energy, respectively, resemble the complementary energy and
entropy principles of the ordinary thermodynamics. The horizontal phase equilibria
will be shown to exhibit spatial phase related to electron density, and hence also a
non-vanishing probability current related to the gradient of electron density.

Throughout the article the following tensor notation is used: A denotes a scalar
quantity, A stands for the row-or column-vector, and A represents a square or rectan-
gular matrix. The logarithm of the Shannon-type information measure is taken to an
arbitrary but fixed base. In keeping with the custom in works on IT the logarithm taken
to base 2, log = log2, corresponds to the information measured in bits (binary digits),
while selecting log = ln expresses the amount of information in nats (natural units): 1
nat = 1.44 bits.

2 Entropy/information contributions due to probability and current densities

Consider the electron density ρ(r) = N p(r), or its shape (probability) factor p(r) =
[A(r)]2 and the current density j(r) in the given (“frozen”-nuclei) molecular system,
at the initial time t0 = 0. In the simplest case of a single electron in the variational state

ϕ(r) = R(r)exp[iφ(r)] = ϕ[p, φ; r] (1)
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the modulus part R(r) of the latter represents the classical amplitude A(r) of the particle
spatial probability distribution,

p(r) = 〈ϕ|ρ̂(r)|ϕ〉 = ϕ∗(r)ϕ(r) = R(r)2 = ρ(r),
∫

p(r) dr = 1,

ρ̂(r) = δ(r′ − r), (2)

while the gradient of its (spatial) phase component φ(r) generates the associated
current density:

j(r) = 〈ϕ|ĵ(r)|ϕ〉 = h̄

2mi
[ϕ∗(r)∇ϕ(r)− ϕ(r)∇ϕ∗(r)]

= h̄

m
Im[ϕ∗(r)∇ϕ(r)] = h̄ p(r)

m
∇φ(r),

ĵ(r) = h̄

2mi
[δ(r′ − r)∇r′ + ∇r′δ(r

′ − r)]. (3)

In the molecular scenario, one envisages a single particle moving in an external
potential v(r) due to the fixed nuclei (Born–Oppenheimer approximation) described
by the Hamiltonian

Ĥ(r) = −
(

h̄2/2m
)

∇2 + v(r). (4)

Its eigensolutions, the stationary states {ϕi (r)},

Ĥ(r)ϕi (r) = Ei ϕi (r), i = 0, 1, 2 . . . , (5)

correspond to the sharply specified energies {Ei }, with the lowest eigenvalue for i
= 0 corresponding to the system ground state, and the stationary (time-independent)
probability distribution pi (r) = [Ri (r)]2. The non-degenerate states correspond to
the vanishing spatial phase, φi (r) = 0 ≡ φ0(r) or ϕi (r) = Ri (r), and hence also to
ji (r) = 0.

When examining the dynamics of such quantum states one allows the time depen-
dence of both components of the full quantum state

ψ(r, t) = R(r, t)exp[iφ(r, t)] ≡ 〈r|ψ(t)〉. (6)

Its time evolution is described by the Schrödinger equation,

Ĥψ = ih̄ ∂ψ/∂t, (7)

which marks the stationary quantum action:

A[ψ] = 〈ψ(t)|Â(r, t)|ψ(t)〉, Â(r, t) = ih̄ ∂/∂t − Ĥ(r). (8)
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One also recalls that the stationary state exhibits a purely time-dependent phase:

ϕi (r, t) = 〈r|ϕi (t)〉 = ϕi (r) exp [−i (Ei/h̄) t]

≡ Ri (r) exp[−iωi t] ≡ Ri (r) exp[iφi (t)], (9)

and thus the vanishing current density of Eq. (3).
It should be stressed that both the probability distribution and its phase/current

density contribute to the resultant information content of quantum states [9,10,21,22].
Therefore, the wave-function modulus (amplitude of the particle probability function)
and its phase (or phase-gradient, i.e., the current density) constitute two fundamental
“degrees-of-freedom” in the quantum IT description of electronic states:

ψ ⇔ (R, φ) ⇔ (p, j) . (10)

One also recalls that the Schrödinger equation gives rise to the probability-continuity
equation,

∂p/∂t = −∇ · j or dp/dt ≡ ṗ = σp = ∂p/∂t + ∇ · j = 0, (11)

which expresses the local balance in electron redistributions from the system prob-
ability angle, of the wave-function modulus. It shows that the local change in
the probability density (l.h.s) is solely due to the probability outflow (r.h.s.) mea-
sured by the negative divergence of the probability current density. It thus signi-
fies the sourceless probability redistributions, with the vanishing total time deriv-
ative (the particle probability source), ṗ = σp = 0, which expresses the time
rate of change of the particle density in an infinitesimal “monitoring” volume ele-
ment flowing with the particle. One can also examine the continuity in the phase
aspect of the quantum state of Eq. (6), alternatively phrased in terms of the phase-
density and the associated phase-current, with the resulting equation then exhibit-
ing a non-vanishing phase-source [9,10,12,13,21,22]. It also follows from the pre-
ceding equation that the probability (wave function) norm remains conserved in
time,

∂/∂t

[∫
p(r, t) dr

]
= ∂/∂t

[∫
ψ∗(r, t)ψ(r, t) dr

]
=

∫
[∂p(r, t)/∂t] dr = 0,

(12)

with the probability current-per-particle, (j/p) ≡ V , measuring the local speed V of
this probability “fluid”, being completely determined by the gradient of the phase part
of the system wave function:

∇φ = (m/h̄) ( j/p) = (m/h̄)V = p−1Im
[
ψ∗∇ψ]

. (13)

We further recall that the density Snclass.(r) = Sφ(r) of the non-classical,
(phase/current)-related complement
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Snclass.[ϕ] = 〈ϕ|Ŝφ |ϕ〉 = −2
∫

p(r)[φ2(r)]1/2dr

= −2〈|φ|〉 ≡ S[p, φ] ≡
∫

p(r)Snclass.(r) dr,

Ŝφ(r) = −2[φ2(r)]1/2 = −2|φ(r)| = Sφ(r), (14)

of the Shannon entropy [3,4] of the classical, probability-based IT,

Sclass.[ϕ] = 〈ϕ|Ŝp|ϕ〉 = −
∫

p(r) logp(r) dr ≡ S[p] ≡
∫

p(r) Sclass.(r) dr,

Ŝp(r) = −logp(r) = Sp(r), (15)

is proportional to the local magnitude of the phase function, |φ| = [φ2]1/2, the square
root of the phase-density π = φ2, with the particle probability p providing the local
“weighting” factor. Together the two components generate the overall Shannon mea-
sure of the quantum indeterminicity content of both the probability and current distri-
butions in a generally complex state ϕ:

S[ϕ] = Sclass.[ϕ] + Snclass.[ϕ] = 〈ϕ|Ŝ|ϕ〉,
Ŝ(r) = Ŝp(r)+ Ŝφ(r) = Sp(r)+ Sφ(r) = S(r). (16)

The Fisher information for locality events [1,2], called the intrinsic accuracy, pro-
vides the classical gradient measure of the information content in the quantum state
ϕ(r):

I class.[ϕ] = 〈ϕ|Îp|ϕ〉 =
∫

p(r)[∇ln p(r)]2dr =
∫

[∇ p(r)]2/p(r) dr = I [p]

= 4
∫

[∇ A(r)]2dr ≡ I [A],
Îp(r) = [∇lnp(r)]2 = [∇ p(r)/p(r)]2 = Ip(r) = 4[∇ R(r)]2, (17)

where A(r) = √
p(r) denotes the associated classical (real) amplitude of the probabil-

ity distribution. This amplitude form is then naturally generalized into the domain of
quantum probability amplitudes, i.e., the complex wave-functions of quantum mechan-
ics [35]. For the one-electron system [see Eqs. (1) and (2)], when A(r) = R(r), this
generalized measure is given by the overall gradient functional,

I [ϕ] = 4
∫

|∇ϕ(r) |2 dr = 8m

h̄2 T [ϕ], (18)

related to the expectation value of the kinetic energy:

T [ϕ] ≡ 〈ϕ| T̂ |ϕ〉 = − h̄2

2m

∫
ϕ∗(r)�ϕ(r) dr = h̄2

2m

∫
|∇ϕ(r)|2 dr. (19)
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This quantum expression for the kinetic energy consists of the classical, von
Weizsäcker type [79] contribution,

T [p] = h̄2

8m

∫ [∇ p(r)]2

p(r)
dr = h̄2

2m

∫
[∇ R(r)]2 dr = T class.[ϕ] = 〈ϕ|Tp|ϕ〉,

Tp(r) = h̄2

8m
[∇ p(r)/p(r)]2 = h̄2

2m
[∇ R(r)/R(r)]2, (20)

depending solely upon the electron probability density, and the non-classical,
(phase/current)-related term

T [p, j] = m

2

∫
j (r)2

p(r)
dr = h̄2

2m

∫
p(r)[∇φ(r)]2 dr = T [p, φ]

= T nclass.[ϕ] = 〈ϕ|Tφ |ϕ〉,
Tφ(r) = h̄2

2m
[∇φ(r)]2. (21)

This separation gives a transparent partition of the kinetic energy functional of
Eq. (19):

T [ϕ] = 〈ϕ|T̂|ϕ〉 = T [p] + T [p, φ] = T class.[ϕ] + T nclass.[ϕ] =
∫

p(r)T (r) dr

T (r) = Tp(r)+ Tφ(r). (22)

Notice, however, that the effective (multiplicative, real) “operator” T (r), derived from
equality of the quantum expectation values,

〈ϕ|T̂|ϕ〉 = 〈ϕ|T |ϕ〉 =
∫

T (r)p(r) dr = T [p], (23)

differs from the true (differential) kinetic energy operator T̂(r) = −(h̄2/2m)∇2 and
measures the density-per-electron of the functional T [p] for the system kinetic energy.

A similar division applies to the overall Fisher information of Eq. (18):

I [ϕ] = I [p] + 4
∫

p(r)[∇φ(r)]2 dr ≡ I [p] + I [p, φ]

= I [p] + 4

(
m

h̄

)2 ∫
j 2(r)/p(r) dr ≡ I [p] + I [p, j]

≡ I class.[ϕ]+I nclass.[ϕ] ≡
∫

p(r)[I class.(r)+ I nclass.(r)] dr, (24)

where the two information densities-per-electron read:

I class.(r) = [∇ p(r)/p(r)]2 = 4[∇ R(r)]2,

I nclass.(r) = 4[∇φ(r)]2 = 4 (m/h̄)2 [ j(r)/p(r)]2. (25)
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The two Fisher information components can be thus expreassed as the quantum
mechanical expectation values of the related (multiplicative) “operators” in the posi-
tion representation, I class.[ϕ] = 〈ϕ|Îp|ϕ〉 [see Eq. (17)] and

I nclass.[ϕ] = 〈ϕ|Îφ |ϕ〉, Îφ(r) = 4[∇φ(r)]2 = Iφ(r),

thus giving the associated expression for the overall quantum measure of Eq. (24):

I [ϕ] = I [p] + I [p, φ]= I class.[ϕ] + I nclass.[ϕ] = 〈ϕ|Î|ϕ〉,
Î(r) = Îp(r)+ Îφ(r) = Ip(r)+ Iφ(r) = I (r). (26)

Both the classical and non-classical densities-per-electron of these complementary
measures of information content are mutually related via the common-type dependence
[9,10]:

I class.(r) = [∇lnp (r)]2 = [∇Sclass.(r)]2 and

I nclass.(r) =
(

2m j(r)
h̄ p(r)

)2

≡ [∇Snclass.(r)]2. (27)

Thus, the square of the gradient of the local Shannon probe of the state resultant quan-
tum “indeterminicity” (disorder) generates the density of the corresponding Fisher
measure of the state quantum “determinicity” (order).

The classical Fisher information is reminiscent of von Weizsäcker’s [79] inho-
mogeneity correction to the density functional for the electronic kinetic energy in the
Thomas–Fermi theory. It characterizes the compactness of the probability density p(r).
For example, the Fisher information in the normal distribution measures the inverse of
its variance, called the invariance, while the complementary Shannon entropy is pro-
portional to the logarithm of variance, thus monotonically increasing with the spread
of the Gaussian distribution. Therefore, the Shannon entropy and intrinsic accuracy
describe complementary facets of the probability density: the former reflects distri-
bution’s spread (delocalization, “disorder”), while the latter measures its narrowness
(localization, “order”).

To summarize, the system electron distribution, related to the wave-function mod-
ulus, reveals the probability (classical) aspect of the molecular information content
[1–6], while the phase(current) facet of the molecular state gives rise to the specifically
quantum (non-classical) entropy/information terms [9,10,21,22]. Together these two
contributions allow one to monitor the full information content of the non-equilibrium
(variational) quantum states, thus providing the complete information description of
their evolution towards the final equilibrium.

3 Molecular equilibria

In this section we reexamine the equilibrium states of electrons in general atomic
or molecular systems [21,22]. The combined classical and non-classical entropy/
information contributions determine the resultant measure of the information content
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in quantum states. In DFT [80,81] one often refers to the density-constrained (vertical)
principles [9,10,82] and states [83–86], corresponding to the fixed probability distri-
bution of electrons. They give rise to the so called vertical equilibria, which are deter-
mined solely by the non-classical entropy/information functionals [9,10,21,22]. The
density-unrestricted variational principles associated with the resultant information
measure similarly determine the horizontal (unconstrained) equilibria in molecules
[9–11]. The vertical entropy-information principles, for the constrained ground-state
energy, have been shown to recover the (stationary) ground-state solution [21,22].
In what follows we examine the associated solutions of the complementary energy-
unconstrained entropy/information principles for the system equilibrium (stationary)
phase.

Let us again consider the simplest, one-electron case of the preceding section.
We explore the vertical equilibrium principles, for the fixed ground-state probability
distribution p0 = R2

0. The optimum solutions are then derived from the extrema of
the non-classical entropy/information functionals S[p0, φ] and I [p0, φ], for the fixed
classical contributions S[p0] and I [p0], respectively. These vertical extrema,

maxφS[p0, φ] or minφ I [p0, φ], (28)

give rise to the associated Euler equations for the optimum phase φ = φopt . in the
trial state ϕ0(r) = ϕ[p0, φ; r]:

δ〈ϕ0|Ŝφ |ϕ0〉/δϕ0(r)∗
∣∣
φ=φopt. = 0 or Ŝφopt. (r)ϕ0(r) = −2|φopt.(r)|ϕ0(r) = 0

⇒ φopt.(r) = 0 ≡ φ0(r),

δ〈ϕ0|Îφ |ϕ0〉/δϕ0(r)∗
∣∣
φ=φopt. = 0 or Îφopt. (r)ϕ0(r) = 4[∇φopt.(r)]2ϕ0(r) = 0

⇒ φopt.(r) = φ0(r). (29)

Hence, they both properly identify the stationary, ground-state solution, for φopt.(r)
= φ0(r) = 0, as the vertical equilibrium state ϕ0(r) = ϕ[p0, φ0; r] of this model system
(see also Fig. 1). We thus conclude, that these non-classical, (phase/current)-related
extreme information principles (EPI) [2] properly predict this lowest eigenstate of the
electronic Hamiltonian as the vertical equilibrium state of the molecule for the ground-
state probability distribution, in which all physical quantities become functionals of the
system electron density alone, in accordance with the first Hohenberg–Kohn theorem
[80].

Next, let us examine the implications of the horizontal extrema of the quantum
measures of the overall (resultant) entropy/information content, subject only to the
constraint of the wave function/probability normalization. Since in quantum mechan-
ics the phase of wave functions is determined only up to the constant, its sign is phys-
ically irrelevant. In what follows, we thus assume φ(r) = |φ(r)| ≥ 0. The functional
derivatives with respect to ϕ∗(r) of the corresponding auxiliary functionals including
the information terms of Eqs. (16) and (28) and the constraint 〈ϕ|ϕ〉 = 1 multiplied
by the Lagrange multiplier μ enforcing this unit norm of the wave function, i.e., the
normalization of probability density,
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�S[ϕ] = 〈ϕ|Ŝ|ϕ〉 − μ〈ϕ|ϕ〉 and �I [ϕ] = 〈ϕ|Î|ϕ〉 − μ〈ϕ|ϕ〉, (30)

give the associated Euler equations for the horizontal equilibrium states
ϕeq.[p, φeq.[p]; r] ≡ ϕeq.[p; r], determining the the system equilibrium phase in
terms of its probability density:

δ�S[ϕ]/δϕ∗(r)
∣∣
ϕ=ϕeq. = {Ŝ[p, φeq.[p]; r] − μ}ϕeq.(r) = 0 or

{−logp(r)− 2φeq.[p; r] − μ}ϕeq.(r) = 0,

δ�I [ϕ]/δϕ∗(r)
∣∣
ϕ=ϕeq. = {Î[p, φeq.[p]; r] − μ}ϕeq.(r) = 0 or

{[∇ p(r)/p(r)]2 + 4[∇φeq.(r)]2 − μ}ϕeq.(r) = 0. (31)

Therefore, these two horizontal principles consistently predict a non-vanishing spa-
tial phase related to the current probability distribution [9]:

φeq.(r) = −(1/2) lnp(r)+ const., (32)

and hence:

ϕeq.[p; r] = R(r) exp[iφeq.(r)]= R(r)exp[−(1/2) lnp(r)] ≡ ϕeq.(r) . (33)

We call such (energy-unconstrained) horizontal-equilibrium states, which correspond
to the unconstrained extrema of the resultant quantum entropy/information measures,
the phase-equilibria of the system under consideration, with the phase then reflecting
the molecular probability distribution.

Clearly, these equilibrium states yield the prescribed probability distribution,
|ϕeq.[p; r]|2 ≡ R2(r) = p(r). Another distinct property of such states is that the
classical and non-classical entropies and their densities are equal, e.g.,

Sclass.[ϕeq.] = Snclass.[ϕeq.] or S[ϕeq.[p]] = 2S[p]. (34)

The same is true for the Fisher information (kinetic energy) contributions:

I class.[ϕeq.] = I nclass.[ϕeq.] or I [ϕeq.[p]] = 2I [p], (35)

T class.[ϕeq.] = T nclass.[ϕeq.] or T [ϕeq.[p]]= 2T [p]. (36)

We further recall that for the equilibrium molecular geometry the ground-state
probability distribution p0 = R2

0 and the exact wave function ϕ0 = ϕ[p0, φ0] = R0
correspond to the atomic-like virial relations between the expectation values T0 and
V0 of the system kinetic and potential energies, respectively,

〈ϕ0|T̂|ϕ0〉 = T [p0, φ0] = T0

= −E[p0] = −〈ϕ0|Ĥ|ϕ0〉 = −E[p0, φ0]= −Ev[p0] = −E0

= −(1/2)V [p0] = −(1/2)〈ϕ0 |v|ϕ0〉
= −(1/2)V [p0, φ0]= −(1/2)Vv[p0] = −(1/2)V0, (37)
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E 

E[p,φ] = 0

  p 

φ                                             ps(r) = 8p0(2r)

φeq.(r)= − ½lnp0(r)

           E[p0,φ]            E[p0,φ0 = 0] = E0 E[p,φ0]

Fig. 1 Schematic diagram of the average electronic energy surface E[p, φ] = 〈ϕ|Ĥ|ϕ〉 of the one-electron
system described by the Hamiltonian Ĥ(r) = −(h̄2/2m)∇2 + v(r) in the variational equilibrium state
ϕ(r) = R(r)exp{iφ(r)] = [p(r)]1/2exp{iφ(r)] ≡ ϕ[p, φ; r], corresponding to the particle-probability
density p(r) = |ϕ(r)|2 = R2(r) and the phase distributionφ(r). Its lowest value E[p0, φ0] = E0 = Ev[p0]
corresponds to the ground-state ϕ0(r) = R0(r) = ϕ[p0, φ0; r], for p = p0 and φ0 = 0. The zero-energy
contour, E[p, φ] = 0, includes the ground-state related points E[p0, φeq.[p0]] and E[ps , φ0], in the
“frozen” probability (p = p0) and the stationary-phase (φ = φ0) cross sections E[p0, φ] and E[p, φ0],
respectively; they accordingly correspond to the equilibrium-phase, φeq.[p0] = −(1/2)lnp0, and the
uniformly-scaled probability distribution, ps (r) = s3 p0(sr), for s = 2

where E0 = T0 + V0 stands for the system ground-state energy. In the equilibrium
state ϕeq.[p0] the potential component remains unchanged,

〈ϕeq.[p0] |v|ϕeq.[p0]〉 = V [p0, φeq.[p0]] =
∫

p0(r) v(r)dr = V0, (38)

while the kinetic energy is doubled [see Eq. (35)]:

〈ϕeq.[p0] |T̂|ϕeq.[p0]〉 = T [p0, φeq.[p0]] = 2T0. (39)

Therefore, the virial relation in the phase-equilibrium state ϕeq.[p0] reads

T [p0, φeq.[p0]]= −V [p0, φeq.[p0]] (40)

and hence its average electronic energy exactly vanishes (see Fig. 1):

〈ϕeq.[p0]|Ĥ|ϕeq.[p0]〉 = T [p0, φeq.[p0]]+V [p0, φeq.[p0]] = 0. (41)

As also shown in the figure, this level of electronic energy can be also reached
by scaling the probability distribution alone, by uniformly contracting (s > 0) the
ground-state density:

ps(r) = s3 p0(sr) . (42)
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Such manipulation of the electronic state modifies both energy components of the
system ground state, Ts=1 = T0 and Vs=1 = T0,

Ts = s2T0 and Vs = sV0. (43)

The requirement Es = Ts + Vs = 0 thus implies s = 2, for which

Ts=2 = 4T0 = −4E0 = −Vs=2 = −2V0. (44)

The zero-energy contour E[p, φ] = 0, including points E[p0, φeq.[p0]] and E[ps=2,

φ0], is also qualitatively depicted on the energy surface of Fig. 1.
Let us next examine other properties of the phase-equilibrium solutions. One first

obseves that these states are not stationary, since their phase gradient does not vanish,

∇ϕeq.[p0] = −(1/2) (∇ p0/p0) = −(∇ R0/R0), (45)

thus giving a finite probability current of Eq. (3):

j[ϕeq.[p0] ; r] = 〈ϕeq.[p0] |ĵ(r)|ϕeq.[p0]〉 = h̄ p0(r)
m

∇φeq.[p0; r]

= − h̄

2m
∇ p0(r) = h̄

m
R0(r)∇ R0(r). (46)

Indeed, the direct action of the Hamiltonian of Eq. (4) on ϕeq.[p0] gives:

Ĥϕeq.[p0] =
{
(1 − i)

(−h̄2

2m

)
[�R0/R0 − i(∇ R0/R0)

2] + v

}
ϕeq.[p0]

≡ [J (R0)+ v]ϕeq.[p0] . (47)

Replacing the complex (multiplicative) operator J (R0) by its Hermitian (real) analog,

T (R0) = (1/2)[J (R0)+ J (R0)
∗] =

(−h̄2

2m

)
[�R0/R0 − (∇ R0/R0)

2]

=
(−h̄2

2m

)
�lnR0, (48)

then finally gives

Ĥϕeq.[p0] =
[(−h̄2

2m

)
�lnR0 + v

]
ϕeq.[p0] . (49)

Using next the energy eigenvalue problem for the ground-state [see Eq. (5)],

Ĥ R0 = (T̂ + v)R0 =
(−h̄2

2m

)
�R0 + vR0 = E0 R0, (50)
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identifies the above local kinetic energy as E0 − v:

(−h̄2

2m

)
(�R0/R0) = E0 − v. (51)

Therefore, Eq. (49) reads [see Eq. (21)]:

Ĥϕeq.[p0] = {E0 + Tφ[φeq.(r)]}ϕeq.[p0] . (52)

The preceding equation thus explicitly confirms, that the equilibrium state ϕeq.[p0] is
not one of the eigenstates of the Hamiltonian.

One further observes that in the ground state [see Eqs. (20) and (50)]

Ĥ R0 = (T̂ + v)R0 = [
Tp + v

]
R0 = E0 R0. (53)

We further recall that, for the purpose of calculating the expectation values of the
electronic energy and its components, the action of the Hamiltonian on the equilibrium
state can be effectively replaced by the multiplicative kinetic energy densities of Eqs.
(20)–(22):

Ĥϕeq.[p0] = (T̂ + v)R0 exp [(−1/2)lnp0]

= [(Tp + v
) + Tφ]R0 exp [(−1/2)lnp0]

= (E0 + Tφ)ϕeq.[p0] , (54)

thus again arriving at Eq. (52).
For examining the time evolution of ϕeq.[p0] one expands this lowest phase-

equilibrium state at the specified time t0 = 0 in terms of the complete set of eigenfunc-
tions of Eq. (5),

{ϕα(r) = 〈r|ϕα〉 = Rα(r) exp[iφα(r)], α = 0, 1, 2, . . .},∑
α

|ϕα〉〈ϕα| = 1, (55)

which determine the basis of the energy representation of ϕeq.[p0]:

|ϕeq.[p0; t0 = 0]〉 =
∑
α

|ϕα〉〈ϕα|ϕeq.[p0]〉 ≡
∑
α

|ϕα〉Cα(t0 = 0) ,

Cα(t0 = 0) =
∫
ϕα(r)

∗ ϕeq.[p0; r]dr

=
∫

[Rα(r)R0(r)] exp{−i[φα(r)+ (1/2)lnp0(r)]} dr. (56)

By the superposition principle of quantum mechanics [60], the squares of these expan-
sion coefficients deftermine the associated conditional probabilities of observing at t0
= 0 the stationary state ϕα in the equilibrium state ϕeq.[p0; t0]:
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P(ϕα|ϕeq.[p0; t0]) = |Cα(t0)|2,
∑
α

P(ϕα|ϕeq.[p0; t0]) = 1. (57)

The normalization condition of the preceding equation can be directly verified using
the completeness of the energy basis [Eq. (55)],

∑
α

ϕα(r)ϕα
(
r′)∗ =

∑
α

〈r|ϕα〉〈ϕα|r′〉 = 〈r|r′〉 = δ
(
r′ − r

)
, (58)

∑
α

|Cα|2 =
∫∫

ϕα
(
r′)∗

ϕeq.
[

p0; r′]ϕeq.[p0; r]∗ ϕα(r) dr′dr

=
∫∫

δ
(
r′− r

) [
R0(r)R0

(
r′)] exp(−i{[φα(r)− φα

(
r′)]

+(1/2)ln[p0(r)/p0
(
r′)]}) dr′dr

=
∫

R0(r)2dr =
∫

p0(r) dr = 1. (59)

Finally, using Eq. (9) gives the time-dependent equilibrium state at t > 0:

|ϕeq.[p0; t]〉 =
∑
α

Cα(t0)|ϕα(t)〉 =
∑
α

Cα(t0)|ϕα(t0)〉exp[−iωαt]

=
∑
α

Cα(t0)|ϕα(r, t)〉. (60)

4 N-electron extension

In DFT one often explores the density-constrained, “entropic” variational principles,
e.g., in Levy’s [82] construction of the universal density functional for the sum of
the electron kinetic and repulsion energies. They are also called the “vertical” [11] or
“thermodynamic” [9,10] searches, by analogy to the maximum-entropy equilibrium
principle in the ordinary thermodynamics [68]. A related problem of constructing the
antisymmetric wave functions of N fermions yielding the prescribed density ρ(r),
vital for solving the familiar N -representability problem of DFT, has been tackled by
Harriman [85] using crucial insights due to Macke [83] and Gilbert [84]. Its three-
dimensional generalization by Zumbach and Maschke [86] introduces the complete
set of the density-conserving Slater determinants. They are build using the plane–
wave-type equidensity orbitals {ϕk(r) = R(r)exp[iΦk(r)]}, which offer a convenient
framework for an extension of the present analysis to general, N -electron systems
[21,22]. In constructing the orthogonal Slater determinants, that generate the speci-
fied electron density [84–86], these orbitals adopt equal, density-dependent modulus
R(r) = p(r)1/2 and the space-dependent phaseΦk(r) = k·f (r)+φ(r) ≡ Fk(r)+φ(r),
with the density dependent vector function f (r) = f [ρ; r] common to all equidensity
orbitals and linked to the Jacobian of the r → f (r) transformation [21,22].
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To summarize, the (orthonormal) Harriman–Zumbach–Maschke (HZM) orbitals
[85,86] for the ground-state probability distribution p0(r) = [R0(r)]2,

ϕk (r) = [p0(r)]1/2 exp{i[k · f [p0; r] + φ(r)]}
≡ R0(r)exp(iΦk[p0; r]) ≡ ϕk[p0; r] , (61)

define the so called Harriman representation of electronic states [22]. The optimum
HZM orbitals are determined by the “orthogonality” phase Fk(r) = k·f [p0; r], with the
wave-vector (reduced momentum) k and the the density-dependent, spatial vector field
f 0(r) = f [p0; r], both resulting from the ordinary variational principle for the system
minimum electronic energy. The optimum shape of the remaining part φ(r) of Φk(r),
called the thermodynamic phase [22], results from the quantum Extreme Physical
Information (EPI) rule, for the given ground-state density ρ = ρ0 or the associated
probability distribution p = p0 determined at the energy optimization stage, which
gives φ(r)opt. = φeq.[p0; r] and hence j[ϕeq.[p0]; r] 
= 0 [Eq. (46)]. Therefore, the
horizontal equilibrium state of N electrons again implies the non-vanishing phase-
gradient and hence also a presence of a finite probability current.

The overall phase Φk(r) of such equidensity orbitals thus involves the orbital-
specific orthogonality (geometric) contribution k · f (r) ≡ Fk(r), which enforces the
independence of these one-particle states, and a “thermodynamic” termφ(r) represent-
ing the phase common to all orbitals. The Slater determinants build from the specific
selection of N different equidensity orbitals,

�k1,k1,...,kN (N ) = (1/
√

N !) det(ϕk1 , ϕk2 , . . . , ϕkN )

≡ �k(N ), ki 
= k j for i 
= j, (62)

then by construction generate the prescribed electron density ρ(r),

〈�k| ρ̂(r) |�k〉 =
N∑

i=1

∣∣ϕki (r)
∣∣2 = ρ(r). (63)

They constitute the complete orthonormal system of N -particle functions capable of
representing any molecular state of N electrons for this specific electron distribution,
in the HZM Configuration–Interaction (CI) type expansion:

�0(N ) =
∫

C0(k) �k(N ) dk. (64)

Both parts of the orbital phase in Harriman’s construction contribute to the proba-
bility current in such a representative (trial) Slater determinant yielding the prescribed
electron density. A given (occupied) equidensity orbital ϕk(r) generates the associated
probability-current contribution

jk(r) = 〈ϕk|ĵ(r)|ϕk〉 = h̄ρ(r)
m N

∇Φk(r) ≡ h̄ p(r)
m

{∇[k · f (r)] + ∇φ(r)}. (65)
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Hence, the overall current j(r) = 〈�k(N )|ĵ(r; N )|�k(N )〉 = j[�k; r] corresponding

to the N -electron current operator ĵ(r; N ) =
N∑

l=1
ĵl(r) in the trial Slater determinant

�k(N )reads:

jk(r)=〈�k(N )|ĵ(r; N )|�k(N )〉=
N∑

l=1

jkl
(r)= h̄ρ(r)

m N

(
N∑

l=1

{∇[kl · f (r)] + ∇φ(r)}
)

= h̄

m
ρ(r)

(
1

N

N∑
l=1

kl

)
∇ · f (r)+ h̄

m
p(r)∇φ(r)

≡ h̄

m
{ρ(r)∇[K · f (r)] + p(r)∇φ(r)}, (66)

where the average “wave-number” vector of �k(N ), independent of the spatial posi-
tion r,

K = 1

N

N∑
l=1

kl .

The phase side of the molecular electronic structure reflects its “entropic” aspect,
which still remains largely unexplored. The complex wave function of the equilibrium
state, generally exhibits a non-vanishing probability current, hence qualitatively dif-
fering from the lowest eigenstate (assumed non-degenerate) of the N -electron Hamil-
tonian,

Ĥ(N ) = V̂ne(N )+ [T̂(N )+ V̂ee(N )] ≡
N∑

i=1

v(i)+ F̂(N ), (67)

in which the particle current identically vanishes. Here, F̂(N )combines the electron
kinetic (T̂) and repulsion (V̂ee) energy operators. Such an “entropic” interpretation
has been also attributed [10–13] to the density-constrained principles in modern DFT,
in the so called “vertical” (entropic) searches performed for the specified electron
density ρ, e.g., in Levy’s [82] constrained-search construction of the universal part of
the energy density functional,

F[ρ] = T [ρ] + Vee[ρ] = inf�→ρ〈�|F̂|�〉 (68)

In this variational procedure one searches over the wave functions �(N ) of N elec-
trons, which yield the given electron density ρ, symbolically denoted by � → ρ,
and calculates the v-independent part F[ρ] of the density functional for the system
electronic energy,

Ev[ρ] = F[ρ] +
∫
v(r) ρ(r) dr, (69)
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as the lowest value (infimum) of the expectation value of F̂(N ). When this search is
performed for the fixed ground-state density, ρ = ρ0, it also implies the fixed DFT
value of the system electronic energy, by the first Hohenberg–Kohn (HK) theorem
[80].

This feature is reminiscent of the criterion for the equilibrium state formulated in
the entropy representation, viz., the maximum-entropy principle for constant inter-
nal energy in ordinary thermodynamics. Indeed, the familiar variational principle for
determining the ground-state wave-function, involving a search for the minimum of
the system energy, can be interpreted as the DFT optimization over all admissible
densities, in accordance with the second HK theorem [80], which then involves the
“internal” (entropic) search over functions of N fermions that yield the current trial
density:

min�〈�|Ĥ|�〉 = minρ Ev[ρ] = minρ

{∫
v(r)ρ(r)dr + inf�→ρ〈�|F̂|�〉

}
. (70)

Consider the equilibrium principles for the extrema of the system entropy/
information, corresponding to the fixed ground-state electron density, ρ = ρ0 or
its probability factor p = ρ/N = ρ0/N = p0, determined in the external search of
the preceding equation. In DFT this internal, entropic principle involves the search for
the optimum wave function�(N ) of N -fermions, corresponding to the fixed external
potential v due to the system nuclei:

E[�(N ) → ρ0] = Ev[ρ0] =
∫
v(r)ρ0(r) dr + inf�→ρ0〈�|F̂|�〉

=
∫
v(r)ρ0(r) dr + F[ρ0]

=
∫
v(r)ρ0(r) dr + Vee[ρ0] + inf�→ρ0〈�|T̂|�〉.

(71)

One observes the presence of the Levy universal functional F[ρ] as the crucial
(entropic) part of this EPI rule [10–13,22]. Notice, that in DFT the external poten-
tial and electron-repulsion energies are fixed by the frozen density constraint, so that
the optimum state also marks the infimum of the Fisher measure of the information
content, related to the system average kinetic energy.

Consider the quantum Fisher information in the electronic state approximated by
the Harriman determinant of Eq. (62), �(N ) ≈ �k(N ),

I [�k] = 4
N∑

i=1

∫
|∇ϕki(r)|2 dr = 8m

h̄2 T [�k] ≡
∫

p(r)I(r) dr

=
∫

p(r)[I class.(r)+ I nclass.(r)] dr = I [p] + I [p,k, φ], (72)
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proportional to the system average kinetic energy

I [�k] ≡ 〈�k|T̂|�k〉 = h̄2

2m

N∑
i=1

∫
|∇ϕki(r)|2dr

≡ T class.[�k] + T nclass.[�k] ≡ T [p] + T [p,k, φ]. (73)

The latter consists of the “classical”, von Weizsäcker density functional T [p], depend-
ing solely upon the particle distribution,

T class.[�k] = h̄2 N

8m

∫ |∇ p(r)|2
p(r)

dr = T [p], (74)

and the “non-classical”, (phase/current)-dependent contribution,

T nclass.[�k] = h̄2

2m

∫
p(r)

N∑
l=1

(∇[kl · f (r + φ(r)])2dr = T [p,k, φ], (75)

T [�k] = T [p] + T [p,k, φ], (76)

related to the corresponding quantum information terms [Eq. (72)]:

I [�k]= I [p]+I [p,k, φ]. (77)

In the vertical ground-state search, for p = p0 = ρ0/N , it is the phase component of
the quantum state which is being optimized. The condition of the extremum (minimum)
Fisher information I [�k[p0]],

δ I [�k[p0]]/δφ (r)=∂ I [p0, φ]/∂φ (r)=0 or
N∑

l=1

{kl · f [p0; r]+φeq.[p0; r]}=0,

(78)

then determines the orthogonality thermodynamic phase φeq.[p0; r] that minimizes
I [p0, φ] [22]:

φeq.[p0; r] = −
(

1

N

N∑
l=1

kl

)
· f [p0; r] ≡ −K(k) · f [p0; r]. (79)

Therefore, the equilibrium phase is determined by the average “wave-number” vector
K in �k = �k1,k1,...,kN , for which the density of I nclass.exhibits the least structure,
i.e., the maximum indeterminacy. Hence the equilibrium equidensity orbitals

ϕkl [p0; r] = [p0 (r)]1/2 exp (i {(kl − K ) · f [p0; r]})
≡ [p0 (r)]1/2 exp{iδkl · f [p0; r]},
≡ [p0 (r)]1/2 exp{iFkl [p0; r]}, (80)
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determine the equilibrium level of the non-classical kinetic energy:

T nclass.[p0, φ
eq.[p0]] = h̄2

2m

∫
p0(r)

N∑
l=1

(∇{δkl · f [p0; r]})2dr

≡ T eq.[p0,K, φeq.[p0]]

= h̄2

2m

∫
p(r)

N∑
l=1

(∇{δkl · f [p0; r]})2dr. (81)

This vertical “thermodynamic” state exhibits the vanishing resultant probability cur-
rent

j[p0; r] = h̄

m
p0(r)

{(
1

N

N∑
l=1

δkl

)
∇ · f [p0; r]

}
≡ h̄

m
p0(r)∇(δK · f [p0; r]) = 0,

(82)

since
∑

lδkl = NδK = 0.
Therefore, in this one-determinant, vertical approximation of the ground-state wave

function �0(N ) = �[N , v], for the vanishing thermodynanmic phase φ = 0 ≡ φ0,

�0(N ) ∼= �k0[N , φ0] ≡ �k0(N ) → ρ0 = N p0, (83)

e.g., in the Kohn–Sham (KS) [81] or Hartree–Fock (HF) [87,88] Self-Consistent Field
(SCF) theories, the optimum (real) reduced-momentum vectors k0[p0] = {k0

l [p0]}
result from the (vertical) minimum energy principle for determining the best (ortho-
normal) equidensity orbitals ϕk[p0; r] that minimize the average value of the system
electronic energy:

min�k→ρ0 〈�k(N )| Ĥ(N ) |�k(N )〉 = 〈
�k0(N )

∣∣ Ĥ(N )
∣∣�k0(N )

〉 = Ek0(N )

⇒ �k0(N ). (84)

This optimum stationary-state determinant�k0(N )generates the best estimate Ek0(N )
of the ground-state energy E0 = Ev[ρ0] in the HZM representation. This variational
procedure implies the Euler–Lagrange problem of the auxiliary energy functional
absorbing the orbital orthonormality constraints, enforced by the relevant Lagrange
multipliers. The associated equilibrium function �k0 [N , ϕeq.[p0]] results from the
extra (Fisher) EPI [8,13,22]:

inf�→ρ0 I [�] = I class.[p0] + inf�→ρ0 I nclass.[p0,k0, φ] ⇒ �k0 [N , ϕeq.[p0]].
(85)

In the HZM construction the lowest equilibrium state is thus determined by the best
SCF values of the “wave-number” vectors k = k0 = {k0

l } of the energy variational
principle of Eq. (84) and the optimum spatial-phase function of Eq. (79):
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φ(r) = φeq.[p0; r] = −
(

1

N

N∑
l=1

k0
l

)
· f 0(r) ≡ −K(k0) · f 0(r), f 0 ≡ f [p0].

(86)

Together they uniquely specify the N lowest, singly-occupied (complex) spin-orbitals
of the “thermodynamic” Slater determinant �k0 [N , φeq.[p0]] corresponding to the
system phase-equilibrium. The minimum Fisher information principle of Eqs. (71)
and (85) thus involves a search for the optimum equidensity orbitals of N electrons in
the ground-state electron distribution ρ0 = Np0, determined by the energy-optimum
“wave-number” vectors k0[p0] of Eq. (84) and the (entropy/information)-optimum,
“equilibrium” phase of Eq. (79).

Let us further explore the relation between the equilibrium (horizontal) phases
of orbitals and the molecular probability distributions. In the single-determinant
approximation �(N ) = (N !)−1/2det({ϕl}) using the equidensity orbitals {ϕl =
[p(r)]1/2exp[iΦl(r)]} the quantum entropy or gradient measures of the information
content are given by the sums of the corresponding orbital contributions:

S[�] =
∑

l

〈ϕl |Ŝ(r)|ϕl〉 =
∑

l

S[ϕl ] and I [�] =
∑

l

〈ϕl |Î(r)|ϕl〉 =
∑

l

I [ϕl ].

(87)

The horizontal equilibria now mark the extrema of the auxiliary entropy/information
functionals

δ{S[�] − μ〈�|�〉} = 0 or δ{I [�] − μ〈�|�〉} = 0, 〈�|�〉 =
∏

l

〈ϕl |ϕl〉 = 1.

(88)

By performing the unconstrained variations of the complex conjugate orbitals these
principles give, for the optimum (normalized) orbitals,

∑
l

〈δϕl |Ŝ(r)− μ|ϕl〉 = 0 or
∑

l

〈δϕl |Î(r)− μ|ϕl〉 = 0. (89)

For arbitrary variations {δϕ∗
l } the preceding relations thus imply the following Euler

equations for the optimum orbitals:

[Ŝ(r)− μ]ϕl = 0 or [Î(r)− μ]ϕl = 0, l = 1, 2, . . . , N , (90)

which again imply the relation of Eq. (32) [see also Eq. (80)]:

Φl(r)eq. = − (1/2) lnp(r)+ Fkl [p0; r] + const.

≡ − (1/2) lnp(r)+ Fkl [p0; r], l = 1, 2, . . . , N , (91)
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where we have again absorbed the constant phase, irrelevant in quantum mechanics,
by the appropriate choice of the zero value of orbital phases.

Therefore, the horizontal equilibrium marks the resultant orbital phases, determined
by the electron probability distribution alone. For p = p0 this is a manifestation of the
Hohenberg–Kohn theorem: the electron density uniquely determines the equilibrium
equidensity orbitals:

keq. = k[p0] , f eq. = f [p0] , φeq. = φeq.[p0] . (92)

The phases of Eq. (91) imply the following orbital contributions to the equilibrium
current:

j[ϕl; r]eq. = jl(r)eq. = − h̄

2m
∇ p(r)+ h̄

m
p(r)∇(δkl [p0] · f [p0; r])

≡ − h̄

2m
∇ p(r)+ h̄

m
p(r)∇(Fl [p0; r]), (93)

shaped by the system probability distribution, and hence the resultant equilibrium
current of N electrons:

j [�k; r] = N jl(r)eq. = − h̄

2m
∇ρ(r). (94)

Therefore, in the phase-equilibrium the overall current is also fully determined by the
gradient of the molecular electron density.

As argued elsewhere [9,10], both the classical and non-classical parts of the
densities-per-electron of the quantum measures of the resultant Fisher and Shannon
information descriptors are mutually related, with the former being determined by
the squared gradient of the latter [Eq. (27)]. One further observes that for the fixed
electron distribution in the internal (vertical) search only the non-classical compo-
nents depend upon the “wave-number” vectors k0 and the phase function φ(r), which
together determine the resultant phase in Harriman’s construction, to be optimized in
the adopted energy or EPI principle. Thus the infimum of the Fisher measure implies
the supremum of the average gradient of the wave function and hence its lowest degree
of structure (“order”). This further implies the highest admissible degree of the wave-
function indeterminacy (“disorder”) marked by the supremum of the complementary
measure, the quantum Shannon entropy:

sup�k0 →p0
S[�] = S[p0] + sup�k0 →p0

S[p0,k0, φ] ⇒ �k0[p0][N , φeq.[p0]].
(95)

Therefore, the two generalized measures of the information content of the complex
wave-function in the Harriman-type construction are complementary in character: the
ground-state density/energy constrained EPI of the lowest quantum Fisher information
is synonymous with the related principle of the highest quantum Shannon entropy. This
is again reminiscent of the complementary equilibrium criteria of the minimum energy
and the maximum entropy in phenomenological thermodynamics.
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To further illustrate this point we again refer to the one-electron example. As in ordi-
nary thermodynamics, the lowest equilibrium state alternatively results either from the
(ground-state) entropy-constrained minimum-energy principle, or from the (ground-
state) energy-constrained maximum of the non-classical Shannon entropy or the min-
imum of the quantum Fisher information [7,8]. Consider the illustrative example of
a single particle described by the Hamiltonian of Eq. (5) in the variational state ϕ(r)
[Eq. (1)]. The minimum principle of the expectation value of the system electronic
energy

Ev[ϕ0] =
〈
ϕ0

∣∣∣ Ĥ
∣∣∣ϕ0

〉
= (h̄2/2m)

∫
[(∇ R0)

2 + R2
0(∇φ)2] dr +

∫
R2

0v dr ≡ E0
v [φ]
(96)

in the modulus-constrained trial state ϕ0(r) = R0(r)exp[i�(r)], where R0(r) =
[ρ0(r)]1/2, for the conserved (phase-independent) entropy S0[ϕ0] = Sclass.[p0] in
the system ground-state ϕ0(r) = R0(r) which marks the vanishing spatial phase
φ(r) = φ0 = 0, its gradient ∇φ0 = 0, and the probability current j(r) = j0(r) = 0,
gives:

min
φ

E0
v [φ] = 〈ϕ0| Ĥ |ϕ0〉 = (h̄2/2m)

∫
(∇ R0)

2 dr +
∫

R2
0v dr ≡ E0

v [φ0]

=
(

h̄2

8m

)∫
(∇ p0)

2

p0
dr +

∫
p0 v dr = Ev[p0]. (97)

This optimum solution also identifies the maximum of the non-classical entropy
S[p0, φ],

maxφS[p0, φ] = S[p0, φ0] = 0,

which also implies the minimum of the associated density-constrained quantum Fisher
information I [p0, φ]:

minφ I [p0, φ] = I [p0, φ0] = 0.

Therefore, we have arrived at a remarkable parallelism with the ordinary thermody-
namics: the ground-state solution alternatively results from the equivalent density-
constrained (vertical) variational principles: of the system minimum electronic energy
or the extremum of the quantum entropy/information.

5 Conclusion

In this article we have emphasized a need for the quantum extensions of the classical
information concepts, in order to accommodate the complex wave functions (prob-
ability amplitudes) of the quantum-mechanical description of molecular electronic
states. The appropriate non-classical generalization of the gradient (Fisher) measure
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of the information content introduces the contribution due to the probability current,
giving rise to a non-vanishing information source. The quantum-generalized Shan-
non entropy similarly includes the additive phase contribution. This extension has
been accomplished by postulating that the relation between the classical Shannon
and Fisher information densities-per-electron extends into the non-classical (quan-
tum) domain, between entropy/information densities due to the state phase/current.
These quantum information contributions complement the classical Fisher and Shan-
non information measures, functionals of the particle probability distribution alone.
The resultant descriptors extract the full information content of the complex probabil-
ity amplitudes (wave functions) of the quantum mechanical description, due to both
the probability and current distributions.

The phase-equilibria of molecular systems have been explored. They correspond to
the unconstrained (horizontal) extrema of the quantum information measures for the
given probability distribution. This optimum phase has been shown to be related to
the logarithm of the electron probability distribution, thus generating a non-vanishing
current and non-classical entropy/information contributions. Selected properties of
such equilibrium states have been examined. In particular, in one-electron systems the
equalization of the classical and non-classical information contributions is observed.
Such states were also shown to correspond to the vanishing expectation value of
the electronic energy, while their currents are shaped by the gradient of the electron
probability distribution.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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